
ADRIAAN BLOEMA GIFT FROM
MAGNOLIA

Being a digital leader is not just a practice; it’s personal. You put your heart and soul into it. In this guide, Adriaan has packed decades
of hard-earned experience in how to wrangle DX in a large organization – and make it move fast.
— Rasmus Skjoldan, Chief Marketing Officer, Magnolia

MAGNOLIA

FASTER – A Guide to Speed for Digital Leaders
Adriaan Bloem & Magnolia
mgnl.io/faster

Layout: Pernille Sys Hansen
e-book versions: Torben Wilhelmsen

2022  |  This content is licensed under
the Creative Commons license, CC BY-SA 4.0.

ISBN 978-3-033-08972-3

A GIFT FROM
MAGNOLIA

https://mgnl.io/faster
http://creativecommons.org/licenses/by-sa/4.0/legalcode

3

PREFACE

Everybody going fast in our industry – started off slow.
There’s no one way to accelerate and you just can’t magically
go from 0 to 60 in no time. When velocity does arrive, main-
taining it then takes a whole different set of skills. FASTER is a
series of personal stories, bringing you insights and expertise
from the playbooks of some of the foremost DX practitioners out
there. These are their hard-earned battle scars, now available
to everybody wrestling with complex digital operations in an
industry that only values one speed: fast.

First up is Adriaan Bloem, fresh from more than a decade
in the Middle East heading one of the world’s largest modern
digital operations. Adriaan’s guide to speed for digital leaders is
a personal account of his experience, but his lessons are univer-
sal. It’s rare we get to peek behind the curtain at how the most
successful orgs arrive at and maintain a winning tempo. This is
one such peek – we hope it’s of use. Ready to pick up the pace?

– Rasmus Skjoldan, Chief Marketing Officer, Magnolia

Adriaan Bloem is first and foremost a digital leader. He has
worked in digital for over two and a half decades. He’s followed
a path from webmaster, sysadmin, developer, project manager,
and industry analyst – all the way to heading one of the world’s
largest modern digital operations. He was the head of digital in-
frastructure at the largest video streaming service in the Middle
East for 10 years, scaling it to millions of subscribers. He now
works with organizations across the globe from his home office
in Spain. Adriaan’s favorite activity is swimming with penguins.

We’ve chosen to make this book available using a
Creative Commons license (CC BY-SA 4.0). We believe
that innovation comes from sharing thoughts and
ideas. And given that the theme of this book is speed,
it made the most sense to us to make it as widely
available as possible.

So here it is – may it help you go faster!

You are free to:

Share – copy and redistribute the material in any medium or format

Adapt – remix, transform, and build upon the material for any purpose, even
commercially.

Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions – You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

CONTENTS

1. Introduction	 8
2. Revolution	 14
3. Evolution	 33
4. Conclusion	 56

8

1. INTRODUCTION

In 1989, Tim Berners Lee invented the World Wide Web,
which became generally available over the course of the next
two years. At that time, I was still messing around with bulletin
boards, IRC, and Gopher. I didn’t pay that much attention to the
Web until a friend of mine showed me the Mosaic browser in
1993. It suddenly clicked. Here was something that combined
three things I really liked: code, design, and writing! My code
was (and is) pretty messy; my design skills never won me any
awards, and I hope my writing has improved since then. But
it grabbed my attention, and ever since, I’ve been involved in
online projects in one way or another.

Of course, what started out as ‘the web’ immediately took
off. It has since changed the way we communicate and do busi-
ness. From the early amateur days in academia, it rapidly pro-
fessionalized. Those original three areas of interest grew into
specializations, and then those specializations further diverged.
Whereas in the early nineties a ‘webmaster’ could (and had to)
do everything themselves, there are now thousands of different
areas of expertise. I’m still trying to have in-depth knowledge
of each of those diverging branches, but I increasingly have to
admit that the best I can do is “I know what I don’t know”. But
it’s fun trying to, so I keep learning.

We started out with ‘the web’, with pages edited in raw
HTML. Then came the WYSIWYG editors – the first content
management systems. And nowadays, we all know this isn’t

9

simply about HTML pages anymore. Or just managing content
and publishing it on a website. The information flows into many
different channels, and even the simplest site will use a dozen
different tools to manage it. What matters now is the digital
experience – DX. That term brings the focus where it should
be: the audience, users, and customers.

Managing that experience is difficult, not in the least, be-
cause it needs to look effortless on the outside. It just needs
to work, like magic. And as any magician will tell you, that’s
really complicated. A project manager once asked me, “Adriaan,
why is this so hard? I have the feeling we must be doing things
the wrong way.” But no, that wasn’t the case; getting it right
happens to be really hard. Actually, the better your understand-
ing, the harder it gets. Once you get past the first peak of the
Dunning-Kruger graph, you know how much goes into the best
magic tricks.

This isn’t particularly helped by the fact that the field
evolves so quickly; we’re constantly aiming at a moving target.
There’s no room for a slow and steady approach because by then,
the goalposts have shifted. Which also means that beyond the
questions of “what do we need to build?” and “how will we
build it?”, an important recurring theme is: “how can we do
this faster?”

How to improve digital experience velocity

In the boardroom, the question you’ll get will be, “why is
this expensive re-platforming project taking so much time?”
In daily operations, it will be “why is it so time-consuming to
build and maintain these integrations?” or “why does it take
so much time to get this campaign live?”

The more experienced your team and the more cycles of
re-platforming you’ve gone through, the louder the question
reverberates. Over the decades, I’ve spent a lot of time mulling
this over; if technology is constantly advancing, and the people
involved know what they’re doing, then what keeps slowing
us down? It’s a question I’ve discussed with people over beers

10

at conferences, over coffee during many projects around the
world, and of course lately – during video calls when we had a
few minutes left to chat about the broader issues.

So rather than try to create a comprehensive, all-encom-
passing guide to “everything that goes into successful digital
experience management,” I decided to narrow down the topic.
This won’t be another Content Management Bible or ‘polar bear
book’. I’m assuming that, if you’re reading this, it won’t be your
first rodeo. You’ll have plenty of understanding of how to tackle
this and don’t need someone to hold your hand. So instead, it’s
everything I think impacts speed on digital projects; illustrated
by anecdotes taken from actual projects I’ve worked on. It’s an
informal attempt at answering that question. “How can we do
this faster?”

Revolution and Evolution

If you’re working with a DXP to manage your digital expe-
rience, there are two very distinct phases in the lifecycle of the
platform. You set it up, and then you operate it. That sounds
deceivingly simple, and everyone who already has a running
infrastructure will know just how much effort goes into these
stages. To do that more justice, I’ve labeled them ‘Revolution’
and ‘Evolution’.

First, I’ll talk about the Revolution. This is where you get
the buy-in and go ahead to re-platform your DX. The focus
there tends to be on the RFP and technology selection, but be-
fore that, I take a step back to look at the wider organization
and how it impacts the speed of the actual implementation.
I’ll then give you some thoughts on the planning and project
structure, and then continue on to the actual requirements and
platform selection.

Launching a new DXP infrastructure can be an enormous
undertaking. Once it goes live, you really don’t want to consider
doing it again, any time soon. For that, you’ll need to move from
Revolution to Evolution. I’ll cover this from two main angles.
First, infrastructure changes, including how to add major inte-

11

grations, new services and tools, and change your implementa-
tion. Then, daily operations, which includes actually using the
platform day to day, how technology can support that in a better
way, and of course, how you can speed things up.

My hope would be that if my advice is helpful, and the
stars align to actually follow it, you won’t have to cycle back to
another Revolution. Instead, you can successfully maintain a
high-paced Evolution. If you do, let me know! I would love to
get tips on how to get better at this. As I mentioned before, I
don’t claim to know everything – and what I know, I’ve learned
by experience, by asking lots of stupid questions, and listening
to great advice.

Who is this for?

As mentioned, if you’re reading this, you probably have
plenty of experience with this already. You’ve platformed and
re-platformed since before ‘digital experience’ was even a thing.
Hopefully, you’ll recognize my anecdotal evidence and find it
useful. Other than that, I’m not specifically addressing any level
of hierarchical seniority. A friend of mine once showed me his
new business cards. “Look!” he exclaimed, “I have no job title
anymore! Now I’ve really made it.”

Similarly, this is not about any specific type of organiza-
tion. I’ve seen similar patterns in small and large enterprises,
non-profit, government, NGOs, education, and large multi-
nationals. Consequently, I’ll use words like ‘organization’ or
‘company’ almost as synonyms – it really isn’t about a particu-
lar legal entity or org chart; the common denominator here is
digital experience.

And finally, I quite like the term ‘digital experience’, though
I’m less enamored of the somewhat buzzwordy acronym ‘DX’.
But it’s still useful in specific circumstances to break this down
to more tangible tools and services. ‘Content Management’ is
still an important practice, and a Web Content Management
System a useful tool. Calling systems ‘digital experience plat-
form’, or DXP is good when it serves to emphasize the goal (dig-

12

ital experience). It’s less helpful if it’s marketing and intended
to lead you to believe it will automatically do everything for
you. There’s a lot more that goes into DX than just a system,
platform, or suite, and you’ll probably need many more than
just one tool to achieve it.

14

2. REVOLUTION

The lifetime of a DX implementation is usually around
three years. Around that mark, markets have shifted, market-
ing wants a refresh, and a new project will be started to redo the
branding and design. This will usually encourage looking into
deeper platform changes, replacing that old CMS, and adding
new or better digital marketing tools. In short, fix everything
that was broken and get the shiny new toys.

2.1 Organization is everything
Torturing the CIO

Before you begin, there are some hard questions to ask. As
a consultant, flying in and then taking the elevator up to the 56th
floor, if I have the chance, I will do what I refer to as “torturing
the CIO” (borrowing a joke from Four Weddings and a Funeral).
It basically means asking one question:

“Why do you even have a website?”

Of course, this could as well be the CEO, the CTO, or the CDO.
And most of these people don’t get to their position without
being able to answer a question like that, even if they didn’t ex-
pect it. Yet, it’s not a very fair question because, of course, every
company or organization needs a digital presence. The simplest
reply would be it’s simply the cost of doing business. After all,

15

an office also has phones, and most people aren’t particularly
interested in calculating the ROI of having those on the desks,
either – you simply need them.

But surprisingly, the answer would be improvised, overly
verbose, and pretty indirect. That’s a good early indicator of a
problem. If the different parts of an organization that have to
cooperate on digital experience don’t have a shared understand-
ing of the core goal, we can’t expect them to quickly move in the
right direction. My equally unfair follow-up question is, “how
does your digital experience link to your mission statement?”
It is an equally unfair question because while most organiza-
tions have a mission statement, it will often be aspirational
marketing.

In short, the real question that needs to be answered, as
early, concise, and direct as possible, is “how does your digital
experience impact the goal of your organization?”.

Depending on the industry, this can range from blindingly
obvious (an ecommerce or online gaming company lives or dies
with the digital experience); to very indirect. I once asked a
university Professor these questions, and he replied, “well, this
institution has done very well for centuries without a website.”
This was true, but entirely unhelpful as guidance for a major
re-platforming and digital infrastructure project.

Spend a moment to think this through and make sure it’s
clear to everybody involved, from the CEO or President down to
the marketing intern. I’m a great advocate for having a ‘digital
experience mission statement’, and it should be as practical as
possible. If everyone is eager to start running, it’s important to
run in the same direction. It’s equally important to understand
where you’re running to. I’ve seen too many projects that were
objectively a success in their goals but achieved little more than
what can be described as ‘distinctly meh’ in terms of results.

Measure everything

You should, of course, attach KPIs to your digital experience
mission statement. This too can be blindingly obvious (‘sell
more ads’, or ‘ship more widgets’). But in many cases, you’ll have

16

to dig a little deeper, especially if DX isn’t in the core DNA of
your organization (yet). However, even with the centuries-old
university, where I was assured profits were not the goal, it
turned out to be relatively easy to start listing out the main
KPIs: ‘increase student enrollment’, ‘improve the international
ranking of research’, ‘reduce the use of paper’, and so on. (The
final list of ‘core KPIs’ was 7 items. Don’t overdo it.)

A KPI isn’t much of a KPI if you can’t measure it – you’d want
to have a before and after for a major platform update, and if
possible, be able to express the ROI in hard numbers. However,
there are ‘soft’ and ‘hard’ KPIs; and then, sometimes, ‘soft’ KPIs
can be converted to ‘hard’ KPIs if you take a closer look.

Let me illustrate with an example. What often starts out as
“our editors hate the current CMS” is not unusual – and probably
very counterproductive – but it isn’t exactly measurable. The
soft KPI would be “let’s poll the editors on their opinions of
the current system; and then let’s do that again, once they’ve
settled into the new system.” That would at least give you a 1–5
ranking on aspects of their digital experience in the platform,
and if (and by how much) it has improved after the investment.
But it would still be hard to link this to your organization’s main
objectives. As much as many companies value the employees’
happiness and well-being, that’s not what will keep the ship
staying afloat. A valid point would be to say that employees
are paid to put up with it – it doesn’t have to be as easy to use
as Facebook just to make it fun.

However, ‘editor productivity’ can be costly to ignore. If you
time daily tasks, you can measure them again once you pres-
ent the new environment. You could even calculate the actual
cost and how much your investment is paying off. Suddenly, a
tangential sentiment becomes a very tangible economic driver.

When the needles don’t align

Inevitably, you’ll run into the next hurdle: the larger your
organization, the more divergent the goals of various depart-
ments will be. That’s far from a digital problem (and I could fill
another few pages with how DX projects often inadvertently

17

unearth various hidden problems that were covered up until
‘disruption’ came along). But it can be a major drag on the speed
of what you’re doing. What people, teams, and departments are
judged by (and what drives promotions and bonuses) is often
contradictory. A simple one would be: “IT needs to reduce cost
and improve infrastructure reliability” vs. “Product wants to
add many new features for the users”. As straightforward as
this one seems, you can already see how it would cause many
conflicts in direction between just two groups. When you then
extend this to more groups, and with very implicit or barely
articulated drivers, trying to run a project at speed can start to
feel like running through quicksand.

So, you could (and should) probably find enough measur-
able soft and hard KPIs for the project. You should also group
them and rank them hierarchically. Don’t think of this as wast-
ing time – it will pay off once you move on. And be sure to
explicitly unload some of these goals when they’re not that
impactful in the bigger scheme of things. If you want to have
cross-departmental buy-in, make sure conflicts are resolved,
or at the very least, acknowledged. I once asked the CMO of
a media company, “so do you want to have more visitors on
your site or more viewers for your channels?” Those can be
conflicting targets, but the answer, of course, was “Yes!” That’s
often the reality of these projects – but at least, in this case, it
was identified early on as a complex contradiction, which got
the attention it required.

Time is relative

You don’t have to be Einstein to know that time is relative,
and as Douglas Adams put it, “time is an illusion; lunch time,
doubly so.” Departments and groups not only have different
targets and goals than the organization at large, they also have
a very different sense of what is ‘fast’.

For instance, updates on an internal financial system can
be glacial – it’s much more important that the consistency of
core reporting is safeguarded, than supporting the interface on
the iPhone 42 or Android Liquorice. Meanwhile, users of a large

18

B2C platform will have no such salaried patience, and will go
onto Twitter with pitchforks and torches if they can’t complete
a transaction after an update of their device.

I remember working on a subscription service and being on
the phone with my DevOps lead. We were laughing, “well, obvi-
ously, if a query takes longer than 30, the call center would ex-
plode!” After the call, a colleague told me, “I’m sorry, I couldn’t
help but overhear – that’s interesting. We’ve been working on
improving the query response times on the Oracle ERP. They’re
also taking about 30 seconds. So we’re working on the same
problem!” I didn’t have the heart to tell him we had been dis-
cussing 30 milliseconds, not seconds. Painting the canvas on
the app and filling it with carrousels and posters takes many
API calls, and if it would take 30 seconds to show anything to
a paying subscriber, they would throw their phone against the
wall in frustration. (In fact, it had been an actual user complaint,
and the user wanted to be reimbursed for the broken device.)
For an employee to wait half a minute to see how many holidays
they have left may be annoying, but if you’d employ the ‘hard’
KPI mentioned earlier, it would be difficult to make the business
case to spend money to improve it. There was no real ROI on
massively scaling the ERP clusters.

That’s not just an amusing anecdote. Various parts of your
organization move at very different speeds, and usually, for very
good reasons. This can be a serious problem for the time to mar-
ket of a digital experience platform, and you’ll slow down when:

	• You adjust to the speed of the slowest common denomi-
nator.

	• You optimistically fit projects to deadlines instead of time
required.

	• You let the most agile and eager teams set the pace, and
‘dependencies’ don’t catch up.

In practice, it’s not just different speeds; it’s entirely differ-
ent timelines, as well. Finance will be eager to close the books
at the end of the fiscal year; Sales may want to get signatures
before Christmas; and your iOS developers are trying to get the

19

new app version out before the Apple keynote in September.
Ignoring these differences will turn harmony into discord, so
you need to be realistic in your planning.

Chop up the elephant

A friend of mine joked that the biggest problem for mam-
moth hunters was fitting them in their fridge after the hunt.
And digital experience can be the wooliest of mammoths to fit
into a project. It’s challenging to set your DX mission, reconcile
conflicting KPIs, and then bridge multiple timelines. The an-
swer is to chop up the elephant and use multiple refrigerators.
Cut the mammoth down to size.

1.	 Divide digital experience re-platforming into multiple
projects, and assign them specific KPIs.

2.	 Allow the projects to run on their own timelines, and
remove as many interdependencies as possible.

For example, a CRM team needed to urgently address cus-
tomer complaints in a more efficient way. The team was strong
(and transparent) in their reporting, and reasonably requested
the implementation of a CRM tool be given priority. This team
was given its own budget, project group, and timelines. As a
result, it was implemented in several months – instead of having
to wait for the completion of the second phase of the overall
product roadmap the quarter after.

The risk here, of course, is that you lose coherence and
oversight. This would be a good moment for me to state that I
really love mammoths and don’t like to see them cut to pieces,
either. But in reality, the extra overhead of coordination and
planning pays off in speed – as long as you’re well aware that
faster is often more complicated. While I’ve been referring to
a ‘project’, it’s better to have a Program Manager oversee many
projects than have a Project Manager drown in the permafrost.

Note how I coyly skipped over how difficult ‘removing inter-
dependencies’ can be in practice – especially on the technology
infrastructure – but I’ll revisit that point later.

20

Who takes the lead?

That addresses the project or program, but what about the
overall lead on digital experience?

In Marketing, the lines between ‘traditional’ and ‘digital’
marketing have blurred to the point that we’re now talking
about ‘experience’. Many marketers will actually say, “isn’t all
marketing digital?” And of course, in most verticals, there are
very large areas outside of digital (which leads to the inevitable
overlap between digital experience to customer experience,
and multichannel to omnichannel). But nobody can ignore
digital anymore.

Likewise, as an organization, you could either be the ‘old
school’ established incumbent or the disrupting startup. But
either way, digital will be a large part of it, and everyone has
their eyes on the big platforms that are swallowing entire in-
dustries. You want to be Uber, not the taxi company; you want
to be Netflix, not Channel 9; you look at Tesla, not at burning
compressed dinosaur fuel. So in a way, isn’t a large part of all
business now digital?

Reality hasn’t quite caught up with the vision here. To sum-
marize:

1.	 Digital experience often doesn’t have a strong enough link
to the overall organizational goals.

2.	 Different departments pursue different goals, slowing
down change.

3.	 Different parts of your organization live at different speeds
and timelines.

The buzzword ‘disruption’ has been overused, and the re-
alization is sinking in that this is actually a change management
problem because disruption is very much outside of the comfort
zone for your organization. Switching technologies and plat-
forms is disruptive, but not necessarily in a good way. You can
roll out swathes of new technology, but this won’t ‘automagi-
cally’ change your processes. Instead, you risk disrupting the

21

existing processes without first optimizing and changing them.
Only then should you roll out the tech to support that.

So as you embark on the odyssey of re-platforming, who
takes the lead? This will often depend on company culture,
historic fence posts, and how the project is perceived or who’s
sponsoring it. In most cases, one department will be seen as
the logical flagbearer. For instance:

	• IT, because a lot of technology is involved
	• A PMO, because of the complications of the project
	• Business departments, because they need it to generate

revenue
	• Marketing, because it’s about external communication

This is by no means an exhaustive list. I’ve even seen Pro-
curement take the lead in some cases because while IT would
posit that it was a technology project, Procurement would argue
it was a lot of new technology. And who else would run the RFP?

You’ll probably be familiar with the DIKW pyramid or one
of its variants. One short version would be that you need data
(D), but raw data needs interpretation in order to become infor-
mation (I). In contrast, information is useless if it isn’t received
and used as knowledge (K). I once worked with a semi-gov-
ernment organization that, perhaps inspired by the pyramid,
had a Department of Data, a Department of Information, and a
Department of Knowledge. Of course, the Department of Com-
munication and the IT Department considered themselves to
be the W in the pyramid (Wisdom). It took several months to
determine who had the biggest stake in the project and would
therefore lead the way.

Determining the lead can be hugely time-consuming and
risks putting too much emphasis on a single set of KPIs, with
one timeline – which may not be the one size that fits all.

So do you need a CDO? This was a big debate fought out in
blog posts and social media, but it seems to be simmering out.
Having a ‘Chief Digital Officer’ would be fairly redundant. As
mentioned before, everybody in the organization should con-
stantly be considering digital. And CDO will now often mean

22

‘Chief Data Officer’ (though the rationale for that kind of CDO
and the interdepartmental battles that follow will often be
strikingly similar). In reality, it may be an imperfect solution
to a problem that’s still very real. I’ve seen many savvy CDOs
navigate their companies to build bridges between departments
and point everybody in the right direction. Having an effective
CDO could be the only way to get things moving.

At the very least, the question should be, can we effectively
reconcile the different concerns? You can temporarily rely on
external consultants to guide you – but it may prove hard to
internalize that way. If you don’t have a CDO, you still need
someone on the C Level as the project sponsor. Given how dig-
ital experience tends to cut through the organization, without
a sufficiently senior sponsor, it will be doomed from the start.

2.2 Planning
In order to start planning a project, you’ll have to choose

a methodology. However, in many cases, that question never
comes up because the methodology is determined by either
one of these two factors:

1.	 You use whatever your organization is currently used to.
2.	 You use something different than what was used before,

because projects kept underdelivering or failing.

It’s easy to find any number of research papers pointing out
that IT projects have abysmal success rates, and the larger and
more complex they are, the worse the results. Generally, 10–25%
of projects will fail altogether, and no more than 25–40% will
be an outright success. For Digital Experience re-platforming,
the numbers tend to be worse – given the factors described in
the previous chapter.

This is why organizations have often made changes to their
project organization over time. ‘Waterfall’ is associated with
long projects, in lengthy (waterfall) phases, top-heavy on up-
front planning. ‘Agile’, by contrast, is perceived to spend much

23

less time on planning and instead allow for constant course
adjustments as you go along. As a result, many have abandoned
waterfall methodologies and moved to agile – and then within
agile, have switched from Scrum, to Kanban, to Lean. However,
a skeptic would say that in practice, the common denominator
is the persistent failures. A cynic would say the main reason
agile success rates are higher, is because waterfall is better at
defining the difference between failure and success.

As the Crowded House song goes, “Wherever you go, you
always take the weather with you.” If you don’t address the
underlying (organizational) issues I described before, you can
change methods all you want – but it’s still applying a method
to the madness. Most organizations have been burned by the
inflexibility of mammoth waterfall projects in the past, but
please remember this:

Agile is not an excuse for not knowing what you want.

Long ago, I ran a consultancy with a business partner, and
he was taking on a project in the Nordics. We’d often be called
in to try to ‘fix’ large projects that were already well underway
to failure. (A colleague once called me “Mr. Wolf”, after the Pulp
Fiction Character who comes in to clean up after a particularly
bloody accident. I took it as a compliment.) This project was no
different as the company had embarked on a complete re-plat-
forming and redesign, building everything from the ground up.
They had expected to complete this in six months. So I asked the
obvious question – how come they haven’t launched anything
yet, after four years? “Because they’re using agile.”

Digital experience is a moving target. It’s constantly and
rapidly evolving. This is why we consistently see two things:

	• Waterfall projects miss the target because by the time they
finish, the target has moved, and the project isn’t flexible
enough to adjust.

	• Agile projects miss the target because the target hasn’t
been properly defined, and constant course adjustments
move the project wildly off course.

24

Agile works extremely well for the ‘evolutionary’ stage of
your infrastructure and platforms (which I will get into in the
next chapter), where constant adjustment allows you to align
with business needs. But it can be a disaster for the underpin-
ning infrastructure re-platforming.

This can be obvious if you look at the classic project man-
agement triangle. Scope, cost, and time are at odds with each
other. Agile favors cost and time; scope can be expendable (and
changeable). But for a foundation, scope and quality are rarely
where you’d want to cut corners.

You could say the Leaning Tower of Pisa was built in agile.
The above-ground stories have been beautifully crafted out
of marble. As the tower started leaning during construction,
higher floors started compensating for the angle (which is why
the building is actually somewhat curved). But that couldn’t
fix it anymore. It had already gone wrong in the foundation
they started with.

Had the foundation been built with waterfall, the tower
wouldn’t have been one of the famous metaphors for failure.
But waterfall favors scope over cost and time, so building the
understructure would quite likely have gone over deadline
and budget. Given the problems with the further construction
it caused (and the fact it took nearly 200 years to complete
anyway), that would still have been preferable in the grander
scheme of things.

This is a long-winded way to illustrate that methodologies
are tools. You need to choose the right one for the job and the
stage where you are at. Don’t discard ‘old hat’ methods to jump
into hipster project management trends. But also, don’t simply
keep doing what you were doing because you are used to it (and
have the diploma on your wall). Each has its own advantages
and disadvantages.

For instance, PRINCE2 is a popular waterfall method in the
UK and Western Europe. It offers a lot of structure and tem-
plates to manage (complex) projects. At the end of each phase,
it recognizes a ‘go/no go’ moment – and it’s incredibly useful
to have an explicit decision on whether to proceed or cut your
losses. (The project can still be considered a ‘success’ if it gets

25

to a ‘no go’ halfway through, as long as it followed the correct
process.) However, within the phases of the waterfall, it can be
very hard (nearly impossible) to change direction, and stages
can easily be 3 months long.

As a completely different example, Kanban famously has
its origin in the “Toyota Production System”. It’s a great way to
prioritize features and maintain a constant output. A Kanban
board is also a great visualization of where you are and what’s
going wrong. But it’s highly serialized and better suited to a
going flow than to get things started. It’s very useful in run-
ning DevOps and goes well with CI/CD. Toyota optimized the
building of millions of cars this way, but nobody ever built an
offshore drilling platform using Kanban.

Scrum, on the other hand, refuses to define itself as a meth-
odology. Instead, it focuses on roles (‘accountabilities’) and

‘events’ (such as the ‘daily standup’ it popularized). This is a great
way to improve the autonomy of teams and allows them to make
constant, on-the-fly changes as a project progresses. However,
it’s entirely unsuited to deadlines. That critical functionality
you need to launch with? Oh, that’s still on the backlog – the
Product Owner deprioritized it.

I could go on about several other methodologies. The key
thing is to understand strengths and weaknesses. People can
be quite religious in their debates about this and completely
stuck in carefully going through the motions of their chosen
path. I once worked in a PRINCE2 project with three people,
where somehow the project manager saw it fit to divide us up
into four different teams (each team had the same three peo-
ple, in different roles – I was lead on two of them). I’ve seen
a daily scrum that couldn’t start because someone was still
sitting down (instead of standing up), and which lasted exactly
15 minutes (in the middle of a sentence) because “that’s what
the book says”. (This is where the Scrum Master becomes the
Scrum Police.)

The two biggest mistaken beliefs here are:

26

1.	 Waterfall is old school and evil.
2.	 Agile will magically fix everything. If it doesn’t, it’s because

you’re using the wrong agile.

So what happens in practice? Most organizations will still
have project managers because projects need to be delivered
within scope, on deadline, and within budget. Most project
managers will then have to carefully manage stakeholders to
convey why you can’t have all three. Managing against a dead-
line is best done in waterfall. However, most of the teams in-
volved (and definitely any tech or development team) will want
to work in agile (often, in scrum, because that’s how they’ve set
up their teams). That’s a paradox that needs careful manage-
ment rather than denial.

Be eclectic in your methodologies, and don’t try to fit square
pegs into round holes. The re-platforming stage is where many
project teams come up with new terms for what works for them.
I kind of like ‘Scrumterfall’, for instance (because it sounds like a
James Bond movie, and I want to be Q), but I’ve also come across
‘Fallban’ and ‘Lean Waterfall’. This mix and match approach
works especially well if the team members are thoroughly inter-
ested and well-versed in very different methodologies. Simply
trying to copy or mimic what other organizations do rarely
works. Remember that Spotify, famously, doesn’t actually follow
the ‘Spotify Method’ themselves (and they’ll be happy to tell you
there actually really isn’t such a thing).

By contrast, I remember discussing the original Agile Man-
ifesto over coffee with a Product Owner in Finland. “If you go
back to the actual core ideas there – couldn’t you do agile in
waterfall?” he mused. And of course, you could, if you “value
individuals and interactions over processes and tools.” Project
management method mash-ups should be a thing. But make
sure it’s based on experience and knowledge.

If you try to fit everything into waterfall, or if you try to fit
everything into agile, you risk being slow, missing deadlines,
and not delivering what’s expected and needed. It’s perfectly
fine to have a Kanban board in your Scrum, and you’ll probably

27

have to deliver in stages to meet the external deadlines. Most
of the tech giants don’t force one methodology on teams, and
for good reason.

2.3 Platform ‘don’ts’
Volumes can be (and have been) written about how to go

about selecting a new DX platform, but there are some general
caveats – things that can easily drag out the promised “3–6
months” to do the new implementation to 1 or 2 years (and
sometimes more). (Incidentally, this is why as mentioned be-
fore, the actual replacement cycle is 3 years, but dragging out
projects often stretches that to 5 or more.) These are some of
the most important ones you will want to avoid, and I’ll give
some extreme (but real) examples to illustrate. Be honest with
yourself when you read those examples, though. Are you sure
you don’t recognize some of it?

Specifying mostly ‘everything that is wrong’ with your
current infrastructure
This is often driven by ‘blaming the system’ thinking. It will

risk turning your RFP process into a negative trip down memory
lane, with requirements driven by ‘fixing what is broken’. In
one extreme case, I saw an RFP with over 900 questions. Most
of them to be answered by yes or no, all of them derived from
wish lists compiled by various teams, but almost none of them
have any bearing on what the organization would actually want
to achieve. Needless to say, this is not the most productive way
to progress.

Over-specifying the requirements
This is time-consuming in itself – but also will quite likely

lead you to:

a.	 Rinse and repeat the previous cycle (sometimes leaving
execs wondering why they bought into this expensive and
resource-intensive project in the first place).

28

b.	 Redo the requirements several times, slowly, in multiple
stages, zeroing in on the goals as ideas are added or rejected,
and goal posts move.

As mentioned before, you can easily spend years this way
without actually getting anywhere. Long ago, I once worked
on a major implementation, and to my surprise, it took over
10 years before it was replaced (instead of the more usual 3–5).
Rather than being proud of my successful groundwork, it made
me suspicious. When I inquired why it had taken so long, the
answers were ‘rapid prototyping’ and ‘working in agile’. Re-
member that rapid prototyping can be a slow disaster given the
complications of the underlying technical infrastructure; agile
shouldn’t be an excuse for not knowing what you want to do.

Boiling the ocean
If you’re experienced and savvy about what you want in a

new digital experience platform, a big risk is wanting, well, ev-
erything. And with the momentum of a re-platforming project,
preferably, wanting everything at the same time. But remem-
ber the woolly mammoth. Implementing a digital experience

‘suite’ may sound like it will give you all you need in one neat
package. But in practice, they result in projects that are too big
to succeed, and the individual components of a suite are often
much weaker than ‘best of breed’ players in each area. So even
if you do manage a successful implementation, functionality
is likely to be below par in key areas. The other way round can
create a similar problem. If you ‘tie together’ many specialist
solutions, you can end up with an incoherent jumble of ‘loose
integrations’ (and a lot of overhead on your front-end apps).
Make sure you figure out how to properly integrate this on the
backend as well. Your employees can be quietly screaming at
their screens if publishing a new campaign requires hopping
around the interfaces of multiple different tools.

Under-specifying the requirements
If your RFP is a two-pager, you’re likely to omit some of the

most important make-or-break essentials. I once saw a compa-

29

ny in the Middle East end up with hosting in France, an integra-
tor in India, and a US-based vendor with a system in Java – while
all of their local in-house resources were firmly entrenched in
PHP. While any one of these factors could have been mitigated
if there would have been a strong case for it, in reality, these
weren’t conscious decisions. They were caused by a casual RFP
driven by financials and timelines with a mostly aspirational
brief. The project was abandoned a year and $250k later.

Starting from a green field with blue sky thinking
Refusing to be limited by technology is great for the initial

brainstorming on where to go, but once you get started, the sky
isn’t the limit. Remember that most systems are quite particular
in the way they work well. But this is often because they codify
years and years of experience with how others have usually set
things up and run them. Make use of that experience, and don’t
try to use a hammer on a screw. I’ve seen companies spend hun-
dreds of thousands on ‘customization’ trying to do everything in
a slightly different way than anyone else before. It’s reminiscent
of the Life of Brian; “look, you’re all individuals!” – but are you
sure you want to be that particular?

Roll your own
Most of all – and this can’t be stressed enough – the only

reason to build your own tools is to discover why you shouldn’t
be building your own tools. It’s easy to spend millions of dollars
that way, and unless you’re honestly going for that moonshot
of creating the next Facebook or Amazon, be very critical of
the potential ROI of “let’s build it ourselves” or “let’s have an
outsourcing company build this for us”.

2.4 Platform ‘dos’
It’s easy to point out the pitfalls, but this leaves the obvious

follow-up question. Great, so what should we do? As touched
upon before, a great deal will depend on the actual goals to be
achieved and aligning on KPIs. But in an ideal case scenario,

30

not constrained by time or resources, there’s a sequence that
generally delivers good results. Of course, in reality, there are
always deadlines and budgets, so it’s fine to compress these
stages by combining several into one or timeboxing the efforts.
But to weed out potential problems early and reach the required
results as quickly as possible, it’s crucial not to skip any of them

– or, more realistically, too many of them. In many cases, some of
these steps are mandatory because of legal compliance or com-
pany policy. Turn that into an advantage, rather than lamenting
the time lost on bureaucracy.

A classic selection process will look something like this:

	• Create a long list of suppliers
	• Send out a Request for Information (RFI)
	• Create a shortlist of suppliers
	• Send out a Request for Proposal
	• Select the winner

What you send to the potential suppliers is, ideally, as
open-ended as you can get away with. This takes a lot of con-
fidence as you won’t have the easily demonstrated ‘objectivity’
of scoring against a long list of requirements, and you’ll have
to invest much more time in investigating how integrators and
vendors will make a platform work for you. But you’ll get the
best responses if you have an open conversation about what
you need, and your requests should be based on scenarios that
don’t dictate an exact way of supporting them. Think of these
as ‘user stories’, but more elaborate and much more of a story.
A supplier should be able to demonstrate how they would go
through these tasks in their systems.

In addition to the standard RFI/RFP, I’d also encourage you
to add two stages:

	• A proof of concept bake-off before deciding, with two or
three competitors: Allocate a time window to have the sup-
pliers start the actual work of setting up your platform.
To level the playing field, you should be prepared to pay
them for the effort if necessary. Make sure what you set

31

as requirements for the PoC is actually doable in a short
period of time, but bear in mind this is not your project
kick-off. You also want to evaluate what it’s like to work
with the supplier, so you’ll have an idea of how the actual
project will go.

	• A discovery phase after deciding, but before you start, and
if possible, before you finalize pricing: You may think you’ve
already set the exact requirements, and want to hold the
supplier to deadlines and cost while delivering what you
want. In reality, at this stage, if your environment has any
amount of complexity, suppliers won’t have any idea what
you need. This leads to over-promising and under-deliver-
ing, and frustration on both sides.

Adding stages will feel like you’re losing time, not speeding
up. But in practice, especially in highly complicated DX plat-
forming projects, a few weeks spent on these are likely to save
you months of delays.

33

3. EVOLUTION

Once you have your shiny new platform up and running,
you’ll have to start changing it. I’ve had to remind multiple
companies that launching a new site and back-end infrastruc-
ture is not like publishing a book. You don’t send it off to the
printers, and it’s not going to sit in a library for centuries looking
the way it did when you finished it. DX channels constantly
evolve. In fact, this will probably start even before your initial
(re)platforming project finishes, when new requirements start
coming in even before you launch.

I tend to see ‘evolution’ as ongoing modifications in two
distinct groups:

1.	 Infrastructure changes: When you need to add new chan-
nels, new tools, integrate a back-end system, and so on; and
require (major) development.

2.	 Daily operations: The daily and weekly operation of the
platform, such as adding a landing page or microsite,
changing an article, adding or modifying a product, using
the interfaces of your system, and without having to code.

If you master these successfully, you shouldn’t need another
‘Revolution’ again – you can keep the entire platform up to date
with constant updates, small and large.

34

3.1 What’s major and what’s minor?
If you consider ‘re-platforming’ the most major (and disrup-

tive) of changes, ‘infrastructure changes’ are next, while ‘daily
operations’ are simply the going concern of operating the DX
platform. Yet it’s common to see these mixed up, and it’s usually
a bad sign. It’s very easy to let infrastructure changes escalate
into re-platforming; or to let inefficiencies in daily operations
go unaddressed, like death by a thousand cuts, instead of ad-
dressing them in infrastructural changes.

For instance, if creating a new landing page requires
DevOps and heavy tech involvement, what should be ‘minor’
is suddenly ‘major’. I worked with one company where creating
a new microsite would take about 2 weeks, including adding
new database tables and deploying code. Since new microsites
would be needed about 40 times a year, against tight deadlines,
the teams were constantly fighting a backlog (as well as stress-
ing out and generally not enjoying their jobs all that much). This
was exacerbated by needing both tech, editorial, and design
involvement, most of it in a very serial process, and of course,
with each team having their own sense of speed and priorities.

If you’d only need this a few times per year, there’s a good
argument not to invest too heavily in tooling to automate a
process like this. Depending on your platform, it could be very
costly to customize the tools to hand control over the process
back to editorial power users. However, if it’s as frequent as 40
times a year – it should be operational, not infrastructural. And
you should invest in the infrastructure to support the operation.

Of course, infrastructure changes then always risk turning
into re-platforming projects. Adding an integration (such as a
booking engine, CRM, inventory management) should be part
of the evolution of your infrastructure. It shouldn’t really require
a wholesale replacement. If it does, you should go back to the
previous chapter – and make sure a new infrastructure and
organizational setup allows for more flexibility.

In the case of the 40 microsites, it was clear this should have
been an operational process. To fix that, it turned into various
infrastructure projects that never quite solved the problem.

35

It then became a re-platforming project which took a year to
complete (costing over a million dollars). It’s worth it to be strict
about the levels of change in analyzing this – and it should be
clear to all teams what the difference is. It can avoid years of
frustration and hidden losses, but the opposite is also true – it
can stop you from going to a ‘big bang’ every time a serious
problem is identified.

There are two areas where special mention is deserved
concerning the boundary between ‘re-platforming’ and ‘infra-
structure change’, changing design, and upgrading the platform.

Revamps, refreshes, and redesigns

‘Changing design’ sounds innocent enough, but it rarely
means you simply update the stylesheet and change the im-
ages. In most cases, templates will have to be rewritten (which
is front-end development work and quickly gets into back-end
code). It often requires major customization (or re-doing the old
customizations from scratch). And if the entire UX is refreshed,
it will almost certainly turn into a re-platforming project. Some-
times that’s merited, but it’s important to go in with eyes wide
open. The impact is often severely underestimated.

I’ve often heard it being referred to as a ‘redesign’ or the
even more innocent sounding ‘revamp’. To management, that
sounds like a quick win, showing progress. In practice, you
should think of it in terms of interior design. Are you painting
the walls, replacing the carpet, and moving the furniture around
a bit? That’s a revamp. But it will often also require tearing down
some walls, moving doors and windows. And before you know
it, you’re basically building an entirely new house from scratch.
Don’t let that happen accidentally.

As a side note, always bear in mind that if there’s one thing
your users absolutely hate, it’s a major overhaul of the UX of
their favorite services and sites. Even if it was obviously broken
before, they learned to live with it. And even if the new UX is
objectively (and measurably) much better, it will take time for
users to get used to using it. It’s why Craigslist still looks like
it was built in 1995. It’s also why eBay faced a furious backlash

36

when they switched their background from yellow to white,
forcing them to roll back the change of color. (They then, clev-
erly, slightly changed the tint week by week until the yellow
had become white – and nobody was upset.)

Platform upgrades

Another severely underestimated ‘infrastructure change’
is upgrading your back-end platform. As much as platform
vendors and integrators will try to sell you on an ‘upgrade’, a
new major version of a platform (say, from 4.7 to 5.0) can mean
moving to an almost entirely new system. ‘Upgrade scripts’ and
migration tools rarely make this a pain-free exercise. In fact, an
upgrade will often be as torturous as re-platforming, especially
if templates and integrations have to be redone.

It’s not uncommon for back-end platforms to be behind at
least one or two major versions because of this, which becomes
an increasing problem given interdependencies with operating
systems, databases, and other components and services. The
outdated platform will often rely on outdated support acts and
won’t play nice with the newer, safer, and updated libraries and
frameworks. This, of course, is a ticking time bomb.

So, make absolutely sure what the impact of the upgrade
will be. Consult with other customers about how they fared and
what their approach was. This will give you a good idea of if it
was, in fact, just a simple patch, or whether it was more akin to a
complete ground-up rebuild, complete with a migration project.

If the upgrade is such a major overhaul, you should take the
opportunity to revisit how the platform stacks up against your
requirements. But always make sure the incumbent is part of
your evaluation. You may have started to hit various walls with
it, but you’ll be keenly aware of its limitations (and a new version
might fix them). You should also be careful not to throw away
the years invested in experience with your experience platform,
not just the tool itself but also the vendor, the integrator, and
the ecosystem.

Finally, while that all may sound daunting, don’t ignore the
reality that this will happen on a fairly regular basis – check

37

the history of your platform for major breaking changes and
their frequency. Postponing a disruptive upgrade because you
can’t spare the resources or time will just mean the decision
will be taken for you when you least want to deal with it. Once
your old platform version finally grinds to a halt, fails to keep
scaling with traffic, or worse, gets hacked, it’ll be too late to do
a considered and thoughtful evaluation of the next steps.

3.2 Infrastructure changes
Beyond those caveats, there is a good part of running the

infrastructure of your DX platform that should be evolutionary.
This is the more ‘technical’ part of keeping your digital expe-
rience up to speed. It will greatly vary how integral a part of
your organization this technical maintenance and evolution is,
depending on what business you’re in and how crucial digital
experience is seen as being to your company.

In fairness, most organizations are not, and never will be,
tech-only companies, so you need to be careful what your ex-
amples are. For example, this is what most of the digital people
will routinely use as examples, and it will start sounding like
this is what everyone should aspire to:

	• Big tech: Companies such as Amazon and Google, that are
dominated by tech, to the point that they’ve productized
their own platforms as cloud platforms that are serving
most of the internet.

	• Major online services: Such as Netflix or Uber, that are also
quite tech-centric, and will to some extent, be building their
own infrastructure but often still rely on infrastructure
vendors to run on.

	• Online startups: These will often begin with just a good
idea but will quickly have to scale their tech operation once
they gain traction, and they’ll often be very vocal about their
way of doing things.

38

But if you’re honest, does your organization fall into any of
the above three categories? Most likely it won’t, and that’s not
a bad thing. Where it goes wrong is if you try to emulate what
you read about these examples, and then try to apply it 1:1 in
your own setting.

Where this can be seen clearly is in the grand aspirations
that shine through in job descriptions. Large multinationals
are asking for an ‘entrepreneurial spirit’ in digital, while in
reality, actual entrepreneurs are rarely cut out for influencing
decision-making in a complicated corporate environment. I’ve
seen many strong traditional businesses ambitiously trying to
poach “preferably with experience at Google or Uber” (or the
equivalent in their industry) to lead their efforts, ignoring that
many of the people from those backgrounds are often not going
to be very effective if you take away their product and tech teams,
and the custom tools they built.

Having spent a fair bit of time in media, let me take that
as an example of a particular vertical. The yardstick there, of
course, is Netflix, which means I’ve often repeated:

	• You’re not Netflix, and that’s fine. There’s no need to re-
invent the wheel on core components they had to build
themselves – which you can now simply buy, as a commod-
ity, from a vendor.

	• Don’t copy the way Netflix looks; copy the way Netflix
thinks. This is somewhat contradictory to what I’ve written
above, but of course, there are many good ideas you can rep-
licate from a company like it. Just be very selective in what
has real-world application in a completely different setting.

For any industry, you’ll have to be very careful which exam-
ples you’d want to emulate, and be very selective of what you
want to incorporate.

The reason I bring all of this up in a section on ‘infrastruc-
ture changes‘, of course, is also something I’ve often heard in
video streaming. “Sure, we can do what Netflix does. If we can
also have the thousands of engineers they have working on
this, please?”

39

The size and responsibilities of your tech teams

I’ve worked across many different industries, budgets, and
ambition levels. But even in the smallest projects, or in orga-
nizations that were most removed from being a tech compa-
ny(even when all implementation or even daily technical op-
eration was outsourced to integrators or professional services),
there’s still a minimum requirement for a tech team. And that
absolute minimum is 2 people, because even if one engineer
could do the job, you need a hot standby when they have a
burnout. And tech people need holidays, too.

It’s crucial to have at least that bare minimum of tech ex-
pertise in your own organization, because without it, you’ll be
forced to blindly trust a third party. And as capable, solid, and
reliable a third party partner can be – and as much as they care
about you as a customer – they’ll never, almost by definition,
care as much about you as they will about their own company.
Or, as I’ve often put it, if you have no idea how a car works,
you’d better hope you’re lucky in the choice of a mechanic. This
is why many taxi companies, even though they’re not in the
business of building or maintaining cars, will still have their
own mechanics.

As the importance of digital experience grows, you’ll find
you have to expand rapidly beyond that absolute minimum.
For instance, by now, it’s not unusual for a company of 2,000–
10,000 people in an entirely non-tech industry to employ about
50–100 people in tech. And by tech, I don’t mean traditional
enterprise IT, but people actually working on the digital expe-
rience. Without a serious team, it will be hard to evolve your
digital experience quickly enough to keep up with your com-
petitors, especially in an age where increasingly, these won’t
be your traditional competitors since disruption tends to come
out of the left field.

But here, also beware that you’re not just “not Netflix” or
“not a tech-only company”. Your company probably also isn’t a
software company. There is a strong tendency of in-house teams
to build against requirements and deadlines, with roadmaps
that don’t cater to the reality of maintaining software. Often,

40

there is no time to go back and refactor, or to take services and
optimize them. Even if there are all the fittings of CI/CD, good
practices, and a strong DevOps culture, that’s simply not really
in the goals of the overall company.

In reality, even software companies struggle with this where
it concerns their DX – the doctors often make the worst patients.

Build vs buy

A crucial factor in how much tech involvement you will
have to insource is whether you choose to build or buy. This is
a debate that has been raging for well over a decade now, and
it’s often presented as a black and white choice. In reality, of
course, it’s not even fifty shades of gray, but more of a rainbow.
In fact, we should probably retire the question altogether now.
Outside of big tech, nobody builds everything themselves. For
all of the innovation Tesla has brought to cars, they’re still using
round wheels – they haven’t reinvented those.

The reality of operating a modern DX environment is that
you buy selectively and build lots of integrations. You’ll need
enormous scale to even begin considering ‘building’ core com-
ponents. But tying together various best-of-breed tools will
still involve a lot of building. And companies offering you a
tantalizing DX ‘suite’ will, paradoxically, probably require you to
build even more than if you’d sort your own Lego bricks. There
are roughly three options:

	• Buy a DX suite that does everything, but in practice will
probably be an unexpectedly loosely coupled set of tools
(quite often cobbled together from acquisitions). Either
that or a gargantuan effort by a single vendor that still
falls considerably short of even the most generic dedicated
solutions. For instance, the built-in analytics will probably
not be nearly as good as Google Analytics, and the email
marketing will probably not come close to something as
simple as Mailchimp.

	• Compile your own suite from best-of-breed solutions.
Depending on how complex your DX environment is, you’ll

41

probably already have several back-end systems for dedi-
cated purposes anyway. You can selectively buy additional
components to extend the capabilities, for instance, add-
ing SalesForce for CRM. However, your DX will start to be
scattered across multiple silos, and teams will be driven
to insanity trying to operate multiple back-end systems
in order to do something as simple as launching a new
campaign. The proliferation of tools will also start to in-
creasingly impact your experience. It’s not unusual for an
app to have to communicate with several dozen APIs from
systems ranging from a CMS, to identity management, to
analytics, and social SDKs. This is why many companies
end up building ‘middle layers’ to unify the communication
from all of those systems and interface with the apps.

	• Choose one platform to be the pivot for all others. This
type of ‘composite DX platform’ means you can bring your
own tools – buy selectively, and get best-of-breed capabili-
ties. But the integrations will often be easier to achieve (and
often there will be pre-existing integrations to work with),
greatly reducing the time to implement them. It also means
you can focus more effort on creating a coherent back-office
environment where your internal users can operate.

I have never particularly believed in ‘suites’ that can do
everything. I love my Swiss Army Knife, and it’s great when
you go camping; but if I were to build a house, I’d rather have
dedicated tools. The main exception here is when you use a
suite to kickstart your re-platforming. However, if that’s the case,
you’ll need to quickly scale your tech organization to cater to
buy, replace, and integrate the parts that are sub-par. At home,
I really only use my Swiss Army Knife for the bottle opener,
but the first week after moving into a new place, I’ll use it for
everything while I try to figure out where I left my screwdrivers
and can opener.

As mentioned, though, the big problem with running all
discrete components is that not one system is leading – with the
issues described. Building the ‘integrations’ to tie it all together
can turn into a nightmare of conflicting interdependencies.

42

‘Middle layers’ are also where the optimism of microservice
architectures dies on the field. They become classic monoliths
and a maintenance nightmare.

Choosing one platform to be leading and serve as the inte-
gration hook for all others is the ideal situation, but it’s also a bit
of a utopia, as most platforms aren’t all that well suited to build
against. “It has various APIs” is one way that salespeople will
sometimes obfuscate the reality of what can be more of a black
box than an open architecture. This is something to seriously
investigate and, if possible, try before you buy. If anything, doc-
umentation for closed source software is notoriously spotty, and
even large and popular open source projects struggle to keep up
in that regard. And even if your platform is well defined, and
architected for extension, have a hard look at how this works
out in the interfaces. Something may very well be ‘integrated’,
but that will be meaningless if it ends up like a runaway train
without the driver being able to keep it on track.

Inhouse or outsourced

I worked for a great COO who had a very simple rule. “You
only hire people if you intend to employ them for at least three
years.” While I’m a great advocate for in-house tech expertise
and building out your own team to at least lead the development
in the right direction, you definitely can’t scale that team fast
enough for re-platforming (and unless you keep doing that
every year, it would make no sense). But you’ll also find that the
going concern of infrastructural change will have high-charged
peaks against deadlines that are hard to deal with or require
expertise that is hard to hire and expensive to keep idling. In
other words, you’ll need partners to keep evolving your DX in-
frastructure. There are three main alternatives to tackle this:

	• Work with Professional Services
	• Work with an Integrator
	• Work with an outsourcing company

43

Working with a vendor’s PS often seems like a great idea
– they’ll likely have the most expertise in their system, and if
anything breaks, can actually get access to the core develop-
ment teams that built it in the first place. However, on larger
projects, they can often be stretched thin; and you may end up
with a lot of boilerplate implementation code that was nev-
er actually meant to leave the sales demo lab, or hasn’t been
properly evaluated in a while. Even worse, if you have to get
two systems to play nice, dueling PS teams from two or more
teams can create a blame-shifting nightmare. On one project,
the project manager told me it reminded him of the movie
Gladiator, with the vendors battling it out in the arena. “And
we don’t actually have an Emperor who can give a thumbs up
or down, either.” In practice, professional services are often
most useful when strategically applied to very specialist parts
of a project (or the parts where a system is particularly resistant
to pleasant cooperation).

For re-platforming projects, an experienced third-party
integrator will often be a better mix of both dedicated to your
goals and independent enough of the software they’re imple-
menting. But, here, be ready to read between the lines when
tough choices have to be made or the integrator is pushing for
some particular solution that nobody in your team seems to
like. There can be internal conflicts in resourcing the different
projects an integrator is running. Finally, never rely on an inte-
grator to maintain the in-depth knowledge of your particular
project. Employees of integrators are as upwardly mobile as the
best of us, and if you have to adapt that integration built by that
large integrator a few years later, you’re likely to find that the
original developers have moved on and nobody knows how it
works anymore. The knowledge will have to be transferred, and
a hand-over is not just a set of documents, but should ideally
involve some intensive co-development to properly anchor it
in your own teams.

Outsourced development can be even more difficult in that
respect. This can be very hard to manage, especially if it’s only
a handful of resources – because then, the onus of managing
them will fall on your own teams. With larger outsourced teams,

44

that will be easier – especially if your outsourcing partner also
has project managers, architects, and product owners. Ideally,
these will work closely with their counterparts in your compa-
ny, so there’s constant communication on every level. ‘Throw-
ing requirements over the wall’ is another accident waiting to
happen. This is particularly true of offshore development (and
even near-shore). If the teams don’t know each other and don’t
regularly communicate, outsourcing is doomed to fail. I’ve been
on many standup meetings covering multiple continents. And
while they can be difficult (with teams trying to understand
each other’s accents and cultural differences), it was always
worth the effort.

Remember, time is relative

As mentioned before, different parts of your organization
live at different speeds and timelines. This means that one de-
partment will come up with a big, disruptive request for an
integration, while another is desperately trying to make the
deadline for a redesign. Even when a company is fully con-
vinced they’ve embraced agile, this will usually be a serial pro-
cess. You can have your new integration – once we’re done with
the current roadmap items. Superficially, that makes complete
sense, as evolution of a DX platform will often already feel like
you’re trying to modify a car while hurtling down the high-
way at 200 kph. But as a fan of fast German cars, I can tell you
from experience that cruise control stops working at that speed.
You can’t afford to rigidly hold on to your defined Scrumterfall
phases if you want to be faster.

One of the biggest tricks to learn and master is therefore to
not only use multiple lanes, but allow the cars to move at different
speeds and different times.

As an example, I once worked on a video streaming service
where the entire streaming infrastructure was being overhauled
and moved from one cloud vendor to another in order to im-
prove the streaming experience; not a time where you’d want
your tech team to be distracted by other requests. However,
simultaneously, the entire ad tech stack had to be ripped out

45

and replaced, or the streams couldn’t be monetized anymore.
And coincidentally, the CRM team had an urgent request to
integrate a CRM tool, since user complaints needed to be dealt
with more quickly and efficiently – also directly impacting the
overall experience.

The traditional way to deal with this would have been to first
finish the video infrastructure, then do the ad stack, and then
start on the CRM integration. But since all three were almost
equally crucial to the service, that wasn’t really an option. So
instead, they ran in parallel, starting and ending in different
but overlapping months. The video infrastructure was handled
entirely in-house; the ad stack was tackled by an integration
team working with external vendors; and the CRM integration
was done with the help of an integrator.

I can’t say this was pulled off without lots of noise, panic,
and some chaos, but in the end, all three were finished within
the same quarter. It was well worth it because otherwise, it
would have been delivered over the course of a year. Lesson
learned: There was no real point trying to avoid the complica-
tions of running major infrastructure projects in parallel. It was
impossible to avoid. So, instead, if you want to be fast, you need
to embrace it and get better at it. And instead of a swimlane
diagram, use the Autobahn.

3.3 Operational changes
What I call ‘operational changes’ is, in reality, what your

internal teams will spend most of their time with. You could
simply call it ‘operations’, but I think it’s important to distin-
guish it from the tech/infrastructure evolution. At the same
time, this is where you’ll most often feel the pain if things are
slow. If your organization, as in the example I used before, cre-
ates lots of campaign microsites or landing pages, doing that
quickly is worth a major investment. If you have to create lots
of product variants, this should be easy to do. If you have many
articles, your platform shouldn’t be the bottleneck in editing
and publishing them.

46

As mentioned, I don’t necessarily think operating a DX
platform needs to be ‘fun’. It’s one of the things I keep hearing
about ‘millennials’ and how they’re ‘digital natives’ that won’t
accept the bad design and complications of an old-school, en-
terprise-like dinosaur of an interface. They’ll want it to be as
easy to use as the apps they use at home, such as Facebook,
Instagram, or TikTok.

Comparing work to leisure that way doesn’t make much
sense (and it’s also rather condescending to millennials). If it
were true, we should probably overhaul the entire office, as
well. Get rid of the old-fashioned desks and office chairs, and
replace them with comfy couches. Have everybody work on
bean bags while simultaneously playing games on big video
screens and eating pizza. In fact, a lot of companies have tried
exactly that – but it hasn’t always improved productivity or
even morale. During the lockdowns of the pandemic, we’ve all
had to learn to work from home, and by now it’s becoming a
problem to get people back into the cushy offices that tried to
be a better version of the home environment.

The reality is that operating a DX environment is complicat-
ed and hard. It’s not at all as simple as posting your own story on
social media. DX lives in multiple channels, often in multiple
languages, and addresses multiple audiences. The experience
is not just two or three dimensional; it will usually have at least
five and probably more dimensions to create variants for. And
you need to take the experts who run the operational changes
across this for you very seriously.

So operational change is a complicated beast, run by pro-
fessionals you pay to get it right. But while there’s no need to
coddle, it’s still exactly the area where a DX platform will need
to prove its value. Back-end interfaces don’t have to be hip and
trendy, and they often don’t benefit from the same iterative
investment in polish that large B2C platforms offer. But it’s
also where you’re most likely to lose or gain speed in evolving
your experience. Optimize your back-end environment, but be
ruthlessly rational about where you want to put the investment.

Let me give you one example. I worked with an organization
where publishing an article would take at least two weeks. We

47

counted the steps required, and we came to an astonishing 37
clicks. That was just the bit supported by the system, though –
the actual process also involved emailing Word drafts to Legal,
then to translation agencies, and then the editor copy/pasting
it into the back-end interface. Then, within the system, it would
pass at least three people before it could get online. In fact,
what was even more astonishing, is it could even be done in
two weeks.

Before the industry embraced the term ‘DX platform’, we
would be talking about ‘Content Management Systems’. And
every once in a while, someone would attempt to define what a
CMS actually is – not an easy task, since even defining ‘content’
is quite difficult. The best I’ve ever managed to do was this: “A
Content Management System is a system to support managing
content.”

This is what often causes most of the pain in operations,
forgetting the platform needs to support the actual process.
Because of that, it doesn’t magically transform the process for
you, and it won’t automatically do everything for you. Worse,
quite often, it doesn’t so much support as actively impede. In-
stead of feeling the speed of running carried by the wind, the
platform puts up an obstacle course. But how do you fix that?

Analyzing the process

Before you begin to rebuild or change your operational
interfaces, you’ll need to analyze the existing process. The
initial question is usually, “but why is the process so slow?” I
mentioned the arduous article publishing process. I’ve seen
similar problems elsewhere.

In one environment, getting an asset online would often
take two days – even though they were supposed to be live the
same day at 8pm. Nobody could quite put the finger on the
delay – and the teams responsible were working very, very hard
to get faster at it. After going over every single step, it turned
out there were two main inefficiencies that were surprisingly
time-consuming: hardware bottlenecks and a serial process for
editing the asset in different language variants. The hardware

48

bottlenecks were relatively easy to fix, though the fix was costly;
just throw more bandwidth and processing power at the prob-
lem. The editorial process, of course, couldn’t really be fixed
in software or platform updates unless the actual process was
changed first. And in that case, something that was originally
seen as out of scope and rather unrelated turned out to be a
major factor; the process simply needed more resources.

In another company, publishing campaigns would take
months. In fairness, the campaigns needed to be rolled out in
dozens of languages across about a hundred countries. Trans-
lation and compliance (both legal and cultural) were, of course,
time-consuming. This was, again, a serialized process (from
language to language), and the main hurdle turned out to be
the translation agency (which often didn’t have the capacity to
do multiple translations in parallel). Once the process for that
was fixed, major infrastructure changes allowed the platform
to actually support the new way of working.

It’s essential to draw out actual flow charts of the process,
both outside of the system and within. To gain speed, you’ll
want to find things such as:

	• Serial processes that can be parallelized
	• Undocumented processes that live outside of the platform
	• Inefficiencies in the operation of your platform

It’s useful to actually calculate the time spent on overheads
like this to then be able to put a number on ‘hidden cost’ (wasted
time). It makes for a great ‘hard KPI’ that can be measured, and
it makes it possible to do an ROI calculation on the investment
to improve the infrastructure and process. This could be as
simple as multiplying cost per resource by the time spent. You
then have a very immediate cost reduction to aim for. It’s often
an easier argument to make than “it’ll improve our competi-
tiveness” or other imprecise goals.

As you do the analysis, be sure to be critical as you can’t
always count on informal accounts of the steps. Many times
when I was explained the process by a manager, the actual,
real-life process turned out to be wildly divergent from what

49

was designed or even perceived to be the case. You have to sit
down with the people doing it, using a stopwatch, and observe
what is keeping them. You’ll see them switching between in-
terfaces, to email and Word and back, and there’s a lot of phone
calls that have taken the place of system notifications that don’t
quite work.

Also, bear in mind that the people within the process will
often not know how to solve it – or will feel powerless to do
anything about either the process or the system that is supposed
to support them through it. I was once sitting in a bar, late at
night after a conference, with a fellow geek as we were talking
about fixing processes, and I asked him, “Do you mean – asking
the users how to fix it?” He exclaimed, “Oh lord no! They don’t
know. That’s not their job.” Which I thought was fair enough

– but it does mean you need someone with a broader view and
mandate in a position to do that job.

Work flows – or does it?

Workflows deserve special mention. In theory, workflows
in a DX platform are there to enforce processes and keep work,
well, flowing. In practice, they seriously slow that flow down
to a trickle, and are generally a terrible idea. You should never
have anything more than a ‘four eyes’ workflow – meaning, one
person creates, another checks and publishes. There are only
two exceptions to this:

	• Translations
	• Compliance

Translations were mentioned in one of my examples. To
take it a bit more broadly, anything that requires multiple vari-
ants created by humans, and especially if it needs to be worked
on by external partners, can benefit from good automated work-
flows directing the content back and forth through that process.
Just make sure the workflows are ‘non-blocking’. You don’t want
the entire publishing flow to halt because one of 27 languages
isn’t ready yet.

50

Compliance is the only good reason for approval workflows.
If you work in pharma, medical, insurance, or banking, you’ll
want to have everything checked and double-checked before it
goes out, because it may be a considerable liability if you don’t.
It really needs an official sign-off before it can be made public.

In practice, most approval workflows are there because
of a lack of trust. I once had a conversation with an editorial
manager who was designing a complex set of approval and
rejection flows, and told him to remove all of it as it would turn
publishing into crawling. “But what if one of my editors makes
a mistake?” he said. “Well, you correct it and publish it again.”

“But what if one of them maliciously slanders the company?” he
asked. “Well, you correct it and publish it again. And then you
fire him.” And, of course, that should be something a good man-
ager should see coming long before it goes off the rails like that.

At the same time, a good platform will, of course, help in
managing editors, as well. It’s useful to have good audit trails
of who did what. It’s also important to see how well content
does. And it should be part of the daily practice to review and
discuss how to improve. There are various excellent tools you
can add to your platform to help with that, depending on the
level of sophistication you want to take this to.

But it also reminds of a broader truth that applies in most
stages and aspects of DX:

You can’t be fast without trust.

Word, Excel, and Outlook are still the main DX tools

Another inconvenient truth for your operations is that
most of it will probably be completely outside of your DX plat-
form. The Office tools are a good example. There’s a reason that
‘copy/pasting from Word‘ is still the bane of many platforms (it’s
notoriously hard to properly clean the Office metadata that’s
pasted without accidentally getting rid of all the formatting).
Most articles are still written in Word, most pricing lists and
schedules are still done in Excel, and most images will still
come from Photoshop.

51

This is perfectly understandable, and not just because ev-
erybody is so used to it. As I touched upon before, a lot of pro-
cesses will actually take place outside of your system. “Quickly
emailing someone a Word doc” is the most common way of
getting feedback and approvals. But there are various other
reasons, as well. I remember an implementation that a compa-
ny was particularly proud of. They had managed to be nearly
‘feature complete’ in the editorial interface, based on extensive
user interviews. Yet everyone was still writing in Word and
then transferring into the system. As it turned out, many of
the editors were in the field, working through spotty internet
connections. The one feature the platform didn’t have was au-
tosave. Every time an editor would lose their connection, they
would lose their entire article and have to start over. You need
to find all of the shortcomings of your platform if you want to
move the process from Office to the cloud.

Of course, you could very well question why you’d want to
enforce that in the first place. And in many cases, it’s actually
perfectly fine, and you shouldn’t waste enormous amounts of
time trying to get people to adopt an online editor over their
trusted offline tools. (Remember that the Achilles heel of cloud
productivity suites is still connectivity, so using Office 365 will
actually be worse than using it on a PC.) However, in many cases,
it will hold you back in the age-old page thinking of yesterday.
This can be a huge obstacle in modern digital experience, be-
cause it will make it very hard to re-use content across channels
and repurpose it for different audiences. By mixing form and
content, you’ll be stuck with the original formatting, sometimes
to the point that you can’t do a redesign without then having
to do a migration to clean everything up.

Modern online editors allow you to create structured con-
tent that’s properly split into sensible components that can be
identified and used by machines, not just ‘a bunch of pages’.
Having a more atomic description of products and articles not
only allows you to safeguard the value of already created con-
tent in the evolution of your DX. It also means you can publish
it to other channels you may not have thought of yet. And if

52

anything, it means you can mark up HTML with microformats
and get Google to notice.

To summarize, Word has no place in DX; but it will probably
be around for a while.

Previews: The disaster you won’t see coming

If you have staff working on campaigns, landing pages, arti-
cles, products, and so on, you’ll want them to be able to imagine
what this will actually look like to the consumer of the content.
This has always been a problem in a digital environment, be-
cause you don’t have precise control over the output (the way
you’d have in print). I once made relentless fun of a designer
whose daily routine included recalibrating his very expensive
wide-gamma screen to be more accurate in color reproduction.

“You do realize most people will see this on an old, yellowed
CRT with bad phosphors, right?” Those bulbous cathode-ray
screens have gone the way of the dodo by now, but one thing
remains, you have no control over the resolution, brightness,
color settings, screen sizes. A lot of very subtle design is totally
lost on many terrible displays. And with apps, new problems
are introduced every few months. I’ve lost a month on a prod-
uct release because the app logo turned out to be hidden by
the then-new iPhone XS’ ‘interesting’ notch on the top of the
screen. You can’t control the end users’ devices, so you need to
bake in flexibility and fallbacks.

Modern digital experience, of course, is a much bigger prob-
lem than that. Not only can’t you control the display, or the
display size and resolution, the content will escape your sites
and apps. It will live on in multiple channels, including social
media, where each service has its own bright ideas on how to
improve the experience. When Instagram introduced stories,
they weren’t square anymore but portrait. And when TikTok
started supporting landscape orientation, and then changed
it a few times, it caught many publishers by surprise.

The classic ‘preview’ of most DX platforms is woefully in-
adequate to account for all those points of view. At best, it gives
an indication of how, for instance, a web page might look on a

53

mobile device. But will it still look the same when it’s displayed
on Facebook’s embedded browser on a phone? And if you’re
looking for the real horror stories, go talk to people who have to
design email newsletters. HTML support in most email clients
seems to have frozen in the world of Internet Explorer 6.

This means two things. First of all, don’t overdo it; you can’t
possibly accurately preview on every single platform and device,
so allow for some disappointment. But secondly, and more
importantly, make sure your staff is well aware and builds up
the experience to understand how digital experience traverses
the channels.

This becomes even more important in the ‘five-dimensional‘
world of modern DX. Because apart from channel and device,
there’s also a temporal flux. One illustration of this is what I’ve
dubbed the ‘Christmas problem’ in ecommerce. One day every-
body is looking for trees and ornaments, and suddenly the next
day, nobody is interested. Similarly, there are one-time events,
special promotions, licensing, and a host of other reasons why
content has a window. How can you possibly preview every
single version at every single point in time?

Again, this will mean relying on the expertise of the people
working the backends, and making sure they have the tools to
quickly and efficiently set those parameters. In terms of pre-
views, consider them hints and reminders. Rather than trying
to reproduce everything, give many good hints and focus less on
the verisimilitude. It’s more useful to see the biggest variations
instantly than being able to investigate each in detail.

Avoid the multi-screen hopscotch

As has come up in other sections, one thing that is quite
probably sucking up time and sucking the life out of your speed
of execution is if your staff has to jump from screen to screen.
To launch a product or campaign, they may need to perform
tasks in a multitude of systems and screens. Find images in
a DAM, write articles and descriptions, add these into a CMS
or product database, create screens, banners, and sliders, add

54

sections and links, and so forth. Better still, try to schedule all
of these in different backends on the same timeline.

This introduces room for error as it’s hard to maintain con-
sistent data across all tools. It will also confuse and distract
your staff. And it will be much slower than anyone involved
would want it to be.

Make sure operational change lives in as few as possible
interfaces, and try to consolidate as many as possible. If you
have a modular DX platform, it can serve as the central hub
to direct and access the other systems and tools. Switching
between windows, copy/pasting, saving, and uploading drain
the life out of the teams. Hopscotch is a fun game, but if the
stakes are real, you’d want to go in a straight line.

3.4 Evolution as the
end to Revolutions
I’ve mentioned several times that if you can keep evolving

at a steady pace, you may be able to avoid needing another
‘Revolution’. If you can keep changing your platform bit by bit,
asynchronously, potentially, you won’t have to do a wholesale
re-platforming ever again. Of course, there will be times where
that’s still unavoidable – directions change, businesses merge
and split, and sometimes you have to redo your entire digital
experience from scratch. But even then, I’d encourage you to
do it as fluidly as possible. Of course, you want to disrupt your
market. But you don’t want to disrupt your business.

56

4. CONCLUSION

There are two things I promised you in the introduction:
a description of the Revolution and the Evolution of DX. More
importantly, I’ve attempted to find the factors that slow these
down; and tried to explain how you can speed them up. Maybe
it can even help you avoid yet another Revolution if you get the
Evolution right.

Hopefully, you’ve found this enjoyable to read, recognizable
along the way, and it would be fantastic if you’re able to use it
yourself.

I mentioned the Dunning-Kruger effect in the beginning
without actually explaining it. I’ve seen it posted and re-post-
ed as a graph so many times I didn’t want to bore you with
the summary. On the Y-axis, there’s confidence; on the X-axis,
there’s actual competence. At the left side of the graph is the
peak of ‘high confidence’ coupled to ‘low competence’; people
who don’t know what they don’t know.

More interestingly, though, is what follows after that initial
peak of over-confidence; a deep valley where competence is
actually increasing, yet confidence is only slowly recovering.
This is where I’d put myself, constantly learning because I’m
very aware that there is so much more to understand.

If you’re climbing that same mountain of digital experience
as I am, I’m sure you’ve disagreed with many things I’ve written.

57

And that’s great! Please find me on Twitter or LinkedIn, or hope-
fully sometime soon in real life again, and let me know. I love
debating these subjects, and I’ll happily concede I’m wrong (at
least occasionally).

