
How Netcetera used Magnolia’s
fast front-end development
to produce software solutions
that count
Magnolia’s front-end developer tools helped software company
Netcetera deliver client projects on time and on budget

Netcetera Case Study

Front-end approach gives speed and agility to finish web
projects quickly

Netcetera is a software development company with over 400 employees in six different
countries. Netcetera aims to produce “software that matters”, meaning that it develops
software that helps their clients reach their digital business goals. Its diverse projects
include for example the timetable planning software for the Swiss Federal Railways, easy
and secure digital payment processing systems, or virtual reality apps for smartphones.
Netcetera often integrates Magnolia in its custom solutions to get the best results.

A software company’s website is its most important calling card and communication tool.
Netcetera re-designed its corporate website with Magnolia. It also used Magnolia to
create a client website for energy provider IWB. Both websites are based on Netcetera’s
own code-collaboration platform called Hibiscus. Magnolia’s fast front-end approach,
called light development, gave Netcetera the speed and agility to finish web projects
quickly, plus the flexibility to build and optimize the development pipeline that works best
for their team.

The challenge

Netcetera had a new vision of how they want to be perceived when refreshing their
corporate identity, design, language and images. For a company producing “software that
matters”, the corporate website had to showcase their best work and innovative solutions
that help clients solve their IT issues from strategy to implementation.

Industry
Technology

Country
Switzerland

Implemented by
Netcetera

Site
www.netcetera.com

The solution
Working with components instead of pages
When Netcetera was re-designing its website, it first
focused on pages, but quickly switched to easy-to-use
components. Netcetera’s marketing department gained
more freedom and control over how the pages looked:
they could mix and match components, assemble and
re-arrange them on a page, re-use them in different
contexts, and not be restricted to pre-defined pages.

The component-centric approach meant that developers
and marketers were talking about, working on, and viewing
and testing the same thing. Components are very flexible
to work with and changes can be made at any stage of the
project. The team could grow the website iteratively: building
the most important components first, then adding new ones
and new functionality—components are very versatile.

Lightweight configuration with YAML
YAML configuration is a huge benefit for developers.
Because the key configuration is in simple files, all of the
changes are checked into GIT with the actual template
files they relate to. Developers can work on them with their
favorite text editors rather than having to learn a new tool.
And the system detects file changes and automatically
reloads the configuration, no server restarts required.
In a pinch, a developer can change a configuration on a
live server by logging into the resources app on Magnolia
AdminCentral. It’s fast and easy to use.

Using content apps to create an information network
Magnolia’s apps approach made it very easy for Netcetera
to handle content. Netcetera used Magnolia’s content apps
to create an information architecture that was structured
more like a network than a hierarchy. Content apps allowed
Netcetera to manage structured data efficiently, e.g.
markets, products, contact persons, awards, and were a
perfect way to navigate and organize the data.

Improved collaboration
Magnolia’s light development enabled the different
Netcetera teams to collaborate better: Java developers
working on the back-end, user experience experts working
on front-end code. Only the back-end developers needed a
full Java development environment; everyone else worked
in their preferred (lightweight) text editor or IDE.

Using light development for IWB
After Netcetera re-designed its website, it used Magnolia
and light development features to create the website for
IWB, an energy provider in Basel, Switzerland.

The result
Faster and on time
Different developer teams—front-end, Angular and
Magnolia - could work in parallel. The marketing
department could continuously test, review and accept
components during the project, resulting in less testing at
the end. The process was more efficient and there was a
lower barrier for front-end developers to contribute to the
project. Thanks to light development, components could
easily be tuned until the last minute before project launch.

Netcetera plans to continually improve its website and its
front-end connector called Hibiscus. It wants to apply the
component-centric approach to more of its code base and
build a store of re-usable components for use on multiple
projects. The software company also added new features
such as drone videos featuring employees.

A living style guide
Netcetera also leveraged light development to create a
connector, called Hibiscus, between Pattern Lab and
Magnolia. Hibiscus is a platform that enables front- and
back-end developers to work together and work fast by
editing the same master files. Pattern Lab is a “living
style guide” where developers can put all their front-end
components together, preview them in browsers, test them
with sample data and discuss them with clients before
integrating the components into their software. Hibiscus
allows developers to work both ways: you can develop pure
front-end components first, and add the CMS integration
afterwards. Or you can develop the raw back-end CMS
templates first, and then let the front-end developers take
over and polish them.

Hibiscus solves the long-standing problem of the
design artefacts getting out of sync with the actual website.
Previously, front-end devs would develop a design “static
prototype” independently, then back-end devs would copy
parts of it into the website CMS. Because the file copies are
separate and independent, they can get out of sync with
subsequent changes. If the front-end devs update the
prototype, those changes need to be done in the CMS.
Likewise, if the back-end devs update the CMS, those
changes need to be done in the static prototype. Hibiscus
removes the need for the static prototype. Each component
file holds both the front-end design prototype and the
actual CMS template—everything now stays in sync
because both parts are in one file and are easy to track
and update.

Check out Hibiscus on Github:
https://github.com/netceteragroup/hibiscus

Magnolia International Ltd. Oslo-Strasse 2
4142 Münchenstein
Switzerland

+41 61 228 90 00
info@magnolia-cms.com
magnolia-cms.com

